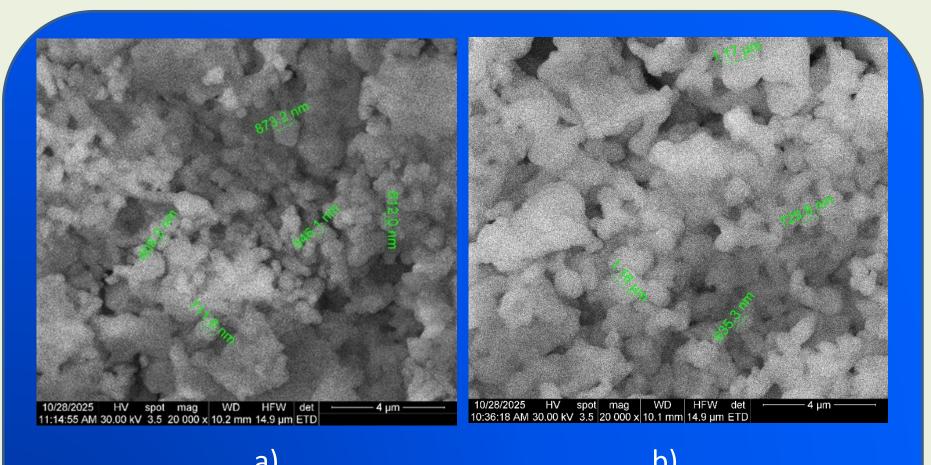


A Top-Down Method for Uncertainty Estimation of the XRFS Outcomes Carried on some up-Conversion Fluorophores


Ion I. Pencea^{1*}, Mihail Secu², Corina Secu², Elena Matei², Brinduş Comanescu³, Cristian Predescu¹, Andrei Berbecaru¹, Florentina Niculescu¹, Andrei L. Timis¹, George Coman¹

^{1.} Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest (UNSTPB), 313 Splaiul Independentei, Romania; ^{2.} National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; ^{3.} OPTOELECTRONICA 2001, 35 Lake street, Măgurele, Romania, https://optoel.ro/; *correspondent author: ion.pencea@upb.ro; ini.pencea@gmail.com;

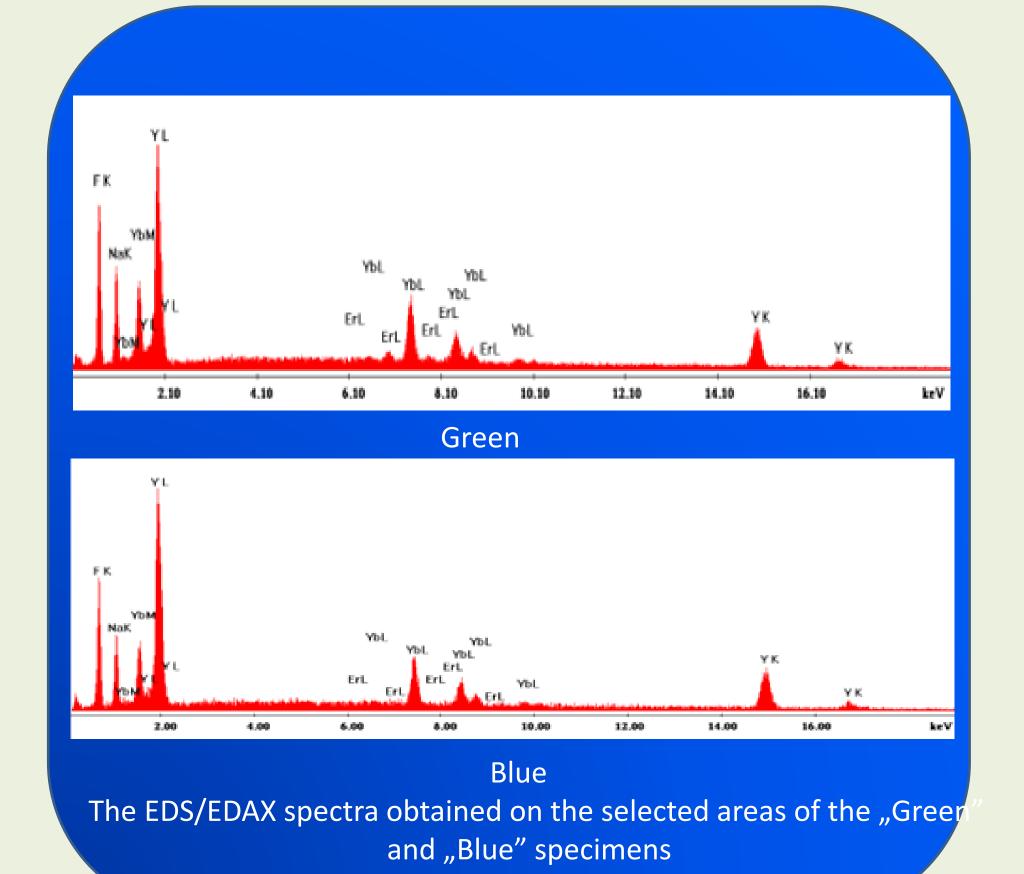
Driving force: The increasing demand for improving the product security has driven an increased interest towards the development of up-conversion fluorophores (UCF) [2]. The ensuring a high quality of a UCF spectral taggant imposes exact composition measurement of UCF. The paper substantiates a new robust top-down method for measurement uncertainty (MU) estimation of the XRFS outcomes carried on UCF. The SEM-EDS data were used to validate this top-down method.

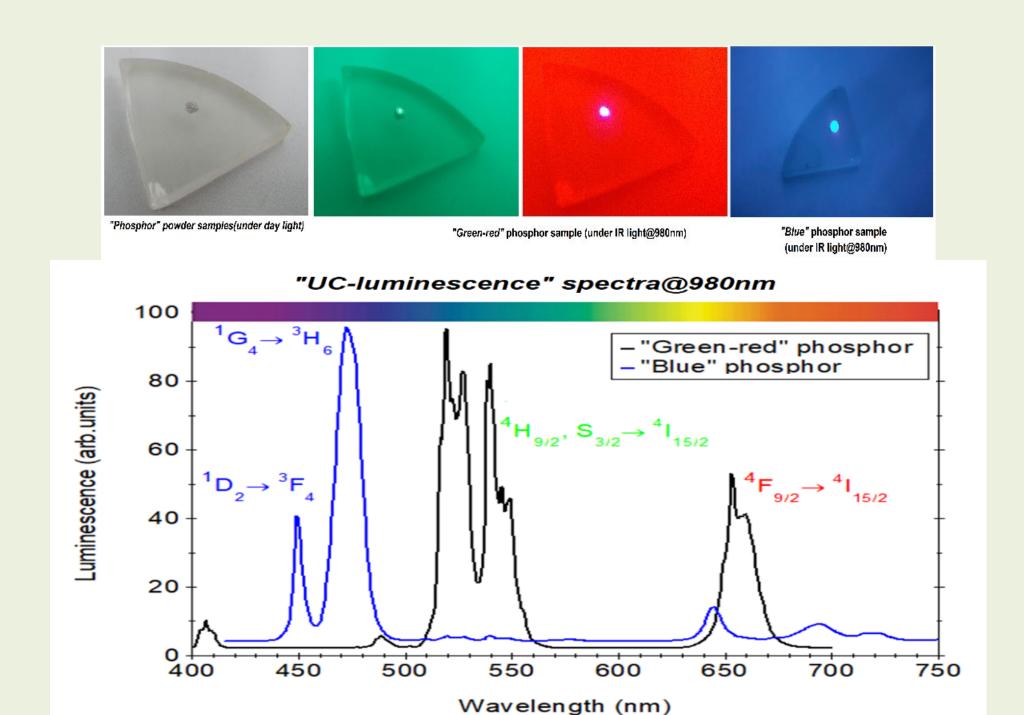
Experimental: Two NaYF4 samples codoped with Yb and Er at different ratios were synthesis through a sol-gel procedure [3]. The measurements were carried with a SciAps X-200 spectrometer and a Zeiss Gemini 500 equipped with an EDS accessory from Bruker.

The sol-gel synthetized UCFs are of globular quasy micronic shape (Fig. 1a,b) and provide mainly green and blue fluorescence under IR 980nm irradiation (Fig. 2.a,b). Hence, they are denoted green and blue samples.

a) b)
SEM images of the: a) Green sample; b) Blue sample

SciAps Material Re	port								
INSTRUMENT X200-32165									
Sample Code			UCF Gre	een					
ELEMENTS	Z	C*	SD**	Unit					
LE Hydrogen-	-	23.41	0.78	%					
Fluorine									
Na Sodium	11	9.58	0.21	%					
Mg Magnesium	12	<8	-	ppm					
Al Aluminum	13	8.5	2	ppm					
Si Silicon	14	<6	-	ppm					
PPhosphorus	15	8.05	2	ppm					
SSulfur	16	7.21	3	ppm					
K Potassium	19	<6	-	ppm					
Ca Calcium	20	10.32	2	ppm					
V Vanadium	23	<6	-	ppm					
Cr Chromium	24	<5	-	ppm					
Mn Manganese	25	<5	-	ppm					
Fe Iron	26	<5	-	ppm					
Ni Nickel	28	<4	-	ppm					
Cu Copper	29	<4	<u>±</u>	ppm					
Sr Strontium	38	5.1	2	ppm					
Y Ytrium	39	44.11	0.21	%					
Zr Zirconium	40	<2	-	ppm					
Nb Niobium	41	<2	-	ppm					
M	42	<5	-	ppm					
Molybdenum									
Ag Silver	47	<5	-	ppm					
Ce Cerium	58	<6	-	ppm					
Nd Neodymium	60	<6	-	ppm					
Er Erbium	68	2.89	0.13	%					
Tm Thulium	69	<6	-	ppm					
Yb Ytterbium	70	20.02	-	%					
Hg Mercury	80	<5	-	ppm					
Pb Lead	82	<5	-	ppm					


References:


[1] *** Calibration Uncertainty for Non-Mathematicians, BEAMEX Calibration White Paper, available at www.beamex.com, accessed on October 22, 2025.

[2]. Senthamarai R., et.al., Recent advances in lanthanide-doped up conversion nanoparticles for optical anticounterfeiting, Coordination Chemistry Reviews, Elsevier, 542, (2025), 216892.

[3]. C. Bartha, C. E. Secu, E. Matei and M. Secu, Crystallization kinetics mechanism investigation of sol–gel-derived NaYF4:(Yb,Er) up-converting phosphors, Cryst. Eng. Comm, 19 (2017), 4992-5000, DOI: 10.1039/c7ce01265a;

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CCCDI-UEFISCCDI, project number PN-IV-P7-7.1-PTE-2024-0827, within PNCDI-IV.

The "Green" and "Blue" UCF specimens (upper side) and their spectra (lower side)

			_		
Element	F	Na	Υ	Yb	Er
CGreen(%wt.)	23.62	9.68	43.56	20.25	3.05
SDmean(95%)					
Green(%wt.)	0.35	0.20	0.76	0.24	0.16
CBlue (%wt,)	24.69	9.21	46.75	19.36	_
SDmean(95%)					
Green(%wt.)	0.91	0.36	0.83	0.37	0.21

The averaged compositions of the "green" and "blue" samples measured by EDS on 4 selected areas

Meas no.														MEDe
Element	1	2	3	4	5	6	7	8	9	10	Mean	SD	Median	(X)
F	23.41	23.52	23.86	23.78	23.52	23.19	23.62	24.16	23.65	23.51	23.62	0.27	23.57	0.18
Na	9.58	9.80	9.71	9.87	9.82	9.69	9.49	9.70	9.59	9.56	9.68	0.12	9.70	0.16
Er	2.89	2.93	2.99	3.04	3.05	3.06	3.08	3.14	3.14	3.16	3.05	0.09	3.06	0.11
Yb	20.02	20.30	20.15	20.11	20.36	20.02	20.25	20.34	20.43	20.55	20.25	0.18	20.27	0.21
Y	44.11	43.49	43.53	42.75	42.66	43.24	44.10	44.55	43.51	43.71	43.56	0.59	43.52	0.64

XRFS outcomes obtained on "green" sample and their statistics calculated via classical and robust statistics (MEDe-ISO 13528/2023)

Element	1	2	3	4	5	6	7	8	9	10	Mean	SD	Median	MEDe(X)
F	22.31	22.28	22.56	22.95	22.94	22.93	23.07	22.73	22.66	22.19	22.66	0.10	22.70	0.37
Na	8.74	8.55	8.66	8.76	8.96	9.07	9.18	9.37	9.29	9.29	8.98	0.09	9.01	0.40
Yb	18.34	18.50	18.89	19.07	18.96	18.93	18.64	18.20	17.77	17.36	18.47	0.18	18.57	0.54
Y	49.69	48.47	47.77	47.75	46.65	47.47	47.94	47.88	48.81	49.47	48.19	0.29	47.91	0.74

XRFS outcomes obtained on "Blue" sample and their statistics calculated via classical and robust statistics i.e. Mean, SD-standard deviation, Median and robust standard deviation (MEDe-ISO 13528/2023)

Conclusions:

The EDS and XRFS results obtained on green and blue UCF samples are compatible. The expanded uncertainty U(95%) assigned to the XRFS outcomes are significant for the first decimal and could make uncertain even the unit figure of the element concentration. However, more attention must be drawn to the exactness of the XRFS and EDS measurement as to ensure a greater exactness (precision and accuracy) of the results. In this regard, we foreseen that further researches must be carried on.

The compositions of the studied UCFs differs significantly from the stoichiometric one as is shown below:

Element	F	Na	Υ	Yb	Er
C _{Reference}	37.14	11.23	34.76	15.22	1.63
C _{Green} (%wt.)	23.62	9.68	43.56	20.25	3.05
C _{Blue} (%wt.)	22.66	9.01	48.19	18.47	-

The difference can be interpreted as meaning that F and Na are lost in the sol-gel process, most likely upon calcination, while Y, Yb and Er increase in concentration. Thus, the exact measurement of the powdered UCF composition trough XRFS provides critical details on their synthesis which otherwise can not be obtained.